Linear theory for a mixed operator with Neumann conditions
نویسندگان
چکیده
We consider here a new type of mixed local and nonlocal equation under suitable Neumann conditions. discuss the spectral properties associated to weighted eigenvalue problem present global bound for subsolutions. The condition that we take into account comprises, as particular case, one has been recently introduced in (Rev. Mat. Iberoam. 33(2) (2017), 377–416). Also, results find natural application logistic motivated by biological problems considered (Dipierro, Proietti Lippi Valdinoci (2021)).
منابع مشابه
A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملA matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کاملA Posteriori Error Estimation for the Poisson Equation with Mixed Dirichlet/Neumann Boundary Conditions
The present work is devoted to the a posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. Using the duality technique we derive a reliable and efficient a posteriori error estimator that measures the error in the energy norm. The estimator can be used in assessing the error of any approximate solution which belongs to the Sobolev space H, indepe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asymptotic Analysis
سال: 2022
ISSN: ['0921-7134', '1875-8576']
DOI: https://doi.org/10.3233/asy-211718